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Abstract

Software evolution is about visions and abstractions.
The success in finding the right visions, i.e., directions of fu-
ture evolution, and abstractions, i.e., concepts by which the
system is understood, provide a good starting point for the
evolution of a software system. In contrast, a failure makes
the system practically unevolvable. Unfortunately, there is
no universally accepted set of visions or abstractions that
could be applied in all systems. Instead, it is up to the de-
velopers to find and document them in particular domains.
Then, criteria are needed for determining the quality of in-
terconnected abstractions and visions. This can be achieved
by modeling the abstractions incorporated in the system as
a hierarchy, where abstraction levels exceeding that of im-
plementation facilities are used. The hierarchy can then
be used for examining new visions and requirements that
emerge over time as well as for supporting associated mod-
ifications. This paper introduces an approach where for-
malism is used for deriving the hierarchy, and provides an
example on the evolution of abstractions.

1. Introduction

While software evolution can be considered as a force
of nature, its sophisticated management is a necessity for
the maintenance of complex systems. In engineering, this
leads to a situation where discussions can be raised, to what
extent systems built in an evolutionary fashion are different
from systems developed from scratch. The answer to this
question, however, lies outside the scope of actual systems
themselves. Instead, we need to look at models of the sys-
tems, the abstractions needed for comprehending and de-
veloping them, and visions and expectations that we have
on their future.

Based on artifacts without direct physical qualities, soft-
ware as such is immensely flexible by its nature. Therefore,
it is possible to define any system using any kind of parti-

tioning into modules1. However, as pointed out in a classi-
cal paper by Parnas[16], some modules are more favorable
than others. The design of modules, their enforcement in
implementations, and the underlying rationale for selecting
the modules provide a basis for arguing about qualities of
different implementations. This is emphasized in practices
like software architecture reviews [3], where the views of
different stakeholders form the basis of evaluation. In cre-
ating the views, it is possible to use different models to high-
light the important aspects, like modifiability of some parts
of the system or implementability of some future visions.

In the technical sense, there is practically only one way
to emphasize anything in software: To design a module
dedicated to that particular issue. This, however, is not al-
ways an optimal solution, as components are also subjected
to other concerns. They should also be units of compi-
lation, reflect available effective implementation technolo-
gies, and, due to the introduction of recent practices, like
design patterns [6], reuse acknowledged good design de-
cisions. In addition to the above technical hinges, human
capabilities also play a big role in decomposition. People
need to be assigned the responsibility of the development
and maintenance of components. Tackling all the above is-
sues simultaneously with one architecture requires delicate
architecting and excellent engineering at best, and is impos-
sible at worst.

The biggest enemy of software evolution is increasing
complexity. In coping with complexity, the most effective
weapon is abstraction. In an ideal world, abstractions would
always be incorporated in individual modules, and, further-
more, obey available implementation interfaces. In reality,
however, abstractions related to conceptual properties of-
ten extend from one module to another. This is evident in
design patterns [6], and in the use of centralized state of a
distributed system [2], for instance.

The clarity of concepts in an implementation architecture
also enables the determination of whether a modification af-

1For the purposes of this paper, we will treat packages, components,
processes, etc. as modules without any exact definition.
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fects the system in a fundamental fashion, or is a minor up-
date that leads to minimal redesign. Therefore, mastering
and maintaining the abstractions and their relations to the
modules of the system is a key issue for preserving the clar-
ity of concepts. This often means denial of the temptation to
extend abstractions or related software modules with some
application-specific additions. The temptation is increased
by the fact that the actual part where the change belongs
may not be clear in a legacy system. Then, it is easiest to
implement the new function in the scope of familiar code
instead of studying all possible alternatives. Furthermore,
in the short run, a straightforward implementation can be
much more effective than a laborious process of identify-
ing all the alternatives and selecting the most justified one.
However, giving in to the temptation leads to difficulties in
the long run.

Conventional software engineering approaches provide
little support for determining whether a change is a minor
one, or such that major reengineering of key abstractions
is required. Based on the above discussion, such suppport
is a necessity for introducing a robust framework for soft-
ware evolution. The rest of this paper addresses this issue
as follows. Section 2 discusses the notion of an abstraction
hierarchy, which aims at relating the different abstractions
needed for comprehending the system. The section also in-
troduces the notion of an abstraction hierarchy that can be
used for evaluating different design decision. Section 3 dis-
cusses maintenance based on abstraction hierarchy. Section
4 provides a discussion on abstractions incorporated in a
mobile switch and their relation to actual implementation.
Finally, Section 5 concludes the paper.

2. Towards an Abstraction Hierarchy

Software engineering abstractions are two-fold. Some of
the abstractions are such that they directly reflect available
implementation facilities, whereas some others exceed lim-
itations of direct implementation concerns. We will refer to
these categories as primitive and non-primitive abstractions,
respectively.

Primitive abstractions are straightforward to describe.
They are what we think about when considering software.
They represent conventional components or software mod-
ules that can be compiled into executables with available
tools, or run with interpreters or virtual machines. How-
ever, straightforward use of primitive abstractions has been
found to harden rather than simplify rigorous reasoning
[13]. Therefore, while needed for effective implementa-
tions, the role of primitive abstractions is not to ease rea-
soning about the system as a whole.

Non-primitive abstractions, in contrast, are difficult to
describe in terms of conventionally used software artifacts.
They represent cross-cutting concerns that cannot be lo-

cated in one module [9], provide a design step that has been
acknowledged as universally favorable [6], or model col-
lective state distributed in multiple implementation compo-
nents [8], for instance. The special role of such abstractions
has also been pointed out in [4], where patterns are advo-
cated as something that extend over objects and tie them
together. As these examples make obvious, there are sev-
eral levels of non-primitive abstractions already in the ap-
proaches that are already available. For instance, aspect-
oriented programming relies on implementation level se-
quences of program code, whereas design patterns are in-
tended to be used as design guidelines.

Based on the above discussion, completed systems po-
tentially include several levels of non-primitive abstrac-
tions. Therefore, formalizations of such systems require
semantically sound and practically manageable representa-
tion of collaborative properties [11]. The DISCO method
[7, 5] enables addressing of such abstractions without be-
ing tied to individual implementation techniques. DISCO

is a formal method, whose semantics are in the temporal
logic of actions [12], a state-based formalism. In addition to
well-defined semantics, the DISCO method introduces step-
wise specification capabilities as a methodological guide-
line. Each step forms a layer in the complete system, where
state variables as well as actions modifying the values of the
layer’s variables are given. For the purposes of this paper, a
simple layer can be given, for instance, as follows:

layer L = {
class C = {b : boolean};
action A(c1, c2: C): c1.b 6= c2.b !

c1.b’ = c2.b ^
5 c2.b’ = c1.b;
} -- layer L

Layer L introduces class C, which has one attribute b of
type boolean. Moreover, the layer has one action: A, in
which two objects of the class C can participate. The ac-
tion can be executed for such objects, which have different
values in their attributes b. In the body of the action the
participating objects swap their values of attribute b.

Layers can also refer to contents of other layers by im-
porting them. The following example depicts this:

layer LL = {
import L;
class C = L.C + {i : integer};
invariant I = 8 c: C :: 9 i: integer :: i < c.i;

5 action A(c1,c2:C) refines L.A(c1, c2) !
c1.i’ = c2.i ^
c2.i’ = c1.i;

} -- layer LL

The capabilities of the DISCO method can be used in a
fashion where abstractions are mapped to their implemen-
tations with invariants that uniquely determine the values of
more abstract variables. The scheme can then be used so
that abstract versions of specifications refer to abstract con-
cepts. Then, these concepts can be refined towards an im-
plementation by introducing lower-level abstractions, and



by proving the associated invariant. For more details re-
garding the refinement scheme incorporated in the formal-
ism, the user is referred to [10].

When the above procedure is applied in a recursive fash-
ion, a hierarchy of abstractions is obtained [14]. Each level
of the hierarchy describes the system with its own con-
cepts. These concepts can be mapped to more concrete ones
when advancing towards implementation, or traced back to
higher-level concepts where more abstract descriptions of
the system can be found. The top level of the hierarchy
is the most abstract description of the system where every-
thing is possible. In this paper, we will refer to this specifi-
cation as �. The lowest level refers to actual code modules.

By establishing an abstraction hierarchy, it becomes pos-
sible to measure the relative complexity of the implementa-
tion with respect to its abstract specification. For the pur-
pose of software evolution, this is a key concept to manage
the direction the implementation is heading. The divergence
of actual code modules from the abstractions included in the
hierarchy provides evidence on potential future problems
for future evolution.

A primitive abstraction hierarchy where all abstractions
follow intermodule interfaces is a layered architecture. For
instance, a file is an abstract concept that often has a lay-
ered implementation. We, however, allow abstractions as
an auxiliary concept that can be used to support software
evolution and the creation of related visions.

3. Maintenance based on Abstraction Hierar-
chy

When an abstraction hierarchy has been established, it
provides a reference for any new features of the system.
When a new requirement emerges, it can be related with
the abstractions already incorporated in the system in terms
of the hierarchy. Further, based on the level of abstraction
in the hierarchy, the relative cost for implementing the new
requirement can be justified due to the following. When a
change is required at a very abstract level, it is likely that
many implementation modules require changes, because
the cross-cutting of the abstraction is large. On the other
hand, if a change is related to a low-level abstraction only,
it is likely that required modifications can be handled lo-
cally within the scope of that particular abstraction. In fact,
at the level of primitive abstractions, interfaces can remain
unchanged provided that the design of the abstraction has
been appropriate. Obviously, based on the information ob-
tained from the hierarchy, the designer can analyse different
implementation alternatives, and their related effect in cod-
ing, testing, and integration.

For more details on the management of evolution, con-
sider the following. Whenever a new requirement is identi-
fied, it is associated with a certain abstraction in the hierar-

chy by analysing the effects of the change. The lowest-level
abstraction that will remain unchanged will be referred to
stable root. This abstraction, all the abstractions above this
level, and abstractions that are independent of stable root
remain unchanged. In contrast, abstractions that are needed
for deriving stable root into more concrete form potentially
need to be reengineered. In order to identify the needed
changes, the layers below stable root specification need to
be analysed with respect to the new requirements. Then, the
lower-level abstractions are modified to support the higher-
level upgrades recursively. In reality, new layers are often
required, or at least provide a justifiable way to specify the
newly emerged properties.

In addition to the use of stable root as an indicator for
changes in the specification level, verification and valida-
tion effort can be focused. As we know that only abstrac-
tions below stable root are modified, it is enough to re-test
abstractions below the root. In reality, however, it is often
desirable to run e.g. old test cases as a regression test to
validate the preservation of unchanged abstractions. Still,
even this case is made easier because we know that the test
outcomes should remain unchanged, resulting in straight-
forward automatic analysis of test results.

Ideally (and also usually in practice) the top levels of the
abstraction hierarchy experience little or no evolution. In
contrast, towards the lower levels of abstraction, more and
more changes occur. This reflects the intuitive assumption
that maintenance is not risking the fundamental concepts
of the system, but extends implementation with new details
thus enhancing the system.

Based on the above discussion, the abstraction hierar-
chy supports separation of implementation details and high-
level abstractions reflecting fundamental concepts. This is
crucial for software evolution. Without such separation, it is
difficult to justify the decisions taken to manage evolution
except as a reflection of resulting implementation architec-
ture. Then, evolution is effectively code manipulation with
little possibilities for fact-based management of main con-
cepts.

4. Example: Abstractions in a Mobile Switch

As an example we give an abstraction hierarchy for a
mobile switch, and show how new properties could be at-
tached to the specification. The switch routes calls2 from
callers to callees. In some cases a call is first routed to one
subscriber and then forwarded to some other. The example
is a simplified version of more comprehensive work carried
out in DISCO project, where selected parts of an existing
mobile switch were modeled.

2We do not give exact meaning to the notion call, which is perhaps
the most intuitive starting point in modeling a switches. However, starting
with call leads to difficulties, as pointed out by Zave in [17].
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Figure 1. Abstraction hierarchy.

4.1. Deriving an Abstraction Hierarchy

The abstraction hierarchy derived in this subsection are
connection, leg and process. The hierarchy is depicted in
Figure 1. Abstractions are discussed in detail in the follow-
ing.

The highest abstraction in the hierarchy is connection.
Informally a caller has connection to the subscriber (callee)
to whom a call has been routed. For example, if subscriber
A calls B then after successful routing AB-connection is cre-
ated. If the call is then forwarded to some other subscriber
(C), AB-connection is replaced by AC-connection. And if
it is again routed to D, AC-connection is replaced with AD-
connection.

Formally connections are DISCO objects (introduced in
layer connections) which have state machines with three
states: unborn, active and terminated. Two variables
(from and to) referring to subscribers are embedded in state
active:

class Connection = {
state = (unborn,

active(from, to : reference Subscriber),
terminated)}

In this layer three actions are introduced for changing the
states of connections: connect, redirect and discon-
nect. Only action redirect is given as an example:

action redirect(to: reference Subscriber;
c: Connection):

c.state = active !
c.active.to’ = to;

Connections are implemented with legs, which form
chains from subscriber to subscriber. In our earlier exam-
ple where A’s call was first routed to B and then to C and
finally to D there are three legs: AB- BC- and CD-leg, which
all together implement an AD-connection (see Figure 2).

Formally legs are DISCO objects given in layer legs,
which imports the layer connections.

class Leg = {
state = (unborn,

active(a, b : reference Subscriber;
next, prev: reference Leg)

5 terminated)}

BC−legB C DCD−leg

AB−leg

A

AD−connection

Figure 2. Abstractions connection and leg.

Variables a and b are references to the subscribers related
by the leg; next and prev are used to form linked lists of
legs.

In addition to plain Legs, the layer introduces relation
isPartOf between legs and connections, which states that
there is an arbitrary number of legs for each connection, and
either no or one connection for each leg.

relation isPartOf(Leg, Connection) is
0..*:0..1;

Invariant legChainImplConnection3 relates connec-
tions and legs. Intuitively it states that if there is an active
connection between two subscribers, then a chain of active
legs (implementing the connection) exists between the two
subscribers (as is the case in figure 2).

invariant legChainImplConnection =
8 c: Connection | c.state.active ::
9 first, last: Leg |
isFirstLegInChain(first) ^

5 isLastLegInChain(last) ^
areMembersOfTheSameLeg(first, last) ::

first.state.active.a = c.state.active.from ^
(first, c) 2 isPartOf ^
last.state.active.b = c.state.active.to ^

10 (last, c) 2 isPartOf;

The layer has five actions: startLeg, addLeg, start-
TearingDown and two actions for tearing down a chain of
legs. Action addLeg is given below as an example. The
action is a refinement of the action redirect in the layer
connections. It states that if there is a chain of legs end-
ing in subscriber sa, then a new leg can be set from sa to
any subscriber sb (and connection c, which is partly im-
plemented by the legs lPrev and lNext, is atomically redi-
rected to sb).

action addLeg(sa, sb: Subscriber;
c: Connection;
lPrev, lNext: Leg)

refines connections.redirect(sb, c) ^
5 lPrev.state.active.b = sa ^

isLastLegInChain(lPrev) ^
(lPrev, c) 2 isPartOf ^
lNext.state.unborn !
lNext.state’ = active(a’=sa, b’=sb, next’=null) ||

10 lPrev.state.active.next’ = lNext ||
isPartOf’ = isPartOf + {(l, c)};

end;

3Moreover, the layer has three more invariants stating that there is one
Connection for each active Leg, and there exists at least one Leg for
each active Connection, and that consecutive Legs are implementing
the same Connection. These are omitted here for brevity.



The next step in the abstraction hierarchy is this layer
processes, where legs are implemented with processes.
The layer is omitted here.

4.2. Evolution

Having the three-level abstraction hierarchy described
above enables us to measure how big is the cross-cutting
of our visions of changes to the system. If, for example, the
change is such that a connection is the stable root, we can
conclude that the change is relatively large (or our original
understanding of the system was poor). On the other hand,
if the change affects only the process level (connection and
leg remain unchanged) then it is minor upgrade. In the fol-
lowing, we give some examples on how to manage software
evolution with the abstraction hierarchy established above.

Difficult Modification: Eavesdropping

An example of a difficult evolutionary step is adding
eavesdropping to the mobile switch. In some countries the
government requires that there must be a possibility for le-
gal authorities to listen calls of suspicious customers. In our
abstraction hierarchy the stable root is an empty specifica-
tion � above connection abstraction. In other words, all
layers require modification.

The modifications are as follows. In layer connections,
we must add reference to possible eavesdropper to the state
active:

class Connection = {
state = (unborn,

active(from, to: reference Subscriber;
eavesdropper: reference Subscriber),

5 terminated)}

After this we must investigate and possibly reengineer
the actions handling connections. For example, in action
redirect we must take care that attribute eavesdropper is
updated properly4. If the callee to whom the call is rerouted
is suspicious then the eavesdropper starts to listen the call,
else the eavesdropping status remains as it was before the
action:

action redirect(to: reference Subscriber;
c: Connection):

c.state = active !
c.active.to’ = to ^

5 c.active.eavesdropper’ = if isSuspicious(to) then
theEavesdropper

else
c.active.eavesdropper;

Changes to layer legs are similar. We must add new at-
tribute (eavesdropper) to class Leg and reengineer actions
referring to leg objects. Moreover, invariant legChainIm-
plConnection must be revisited. Changes to layer Pro-
cesses are omitted here for brevity.

4For simplicity we have only one legal authority carrying out eaves-
dropping.
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Figure 3. Upgraded abstraction hierarchy.

Related verification and validation activities also require
major attention. In fact, all test cases should be rerun as
such (regression tests) and in a fashion where eavesdrop-
ping is active. In reality, this degree of testing for eaves-
dropping only is of course unrealistic.

In order to add eavesdropping to the specification we
made changes to existing abstractions. This is not the case
always, it is also possible to add totally new abstractions for
the system. For instance, conference call would be a totally
new abstraction for our example. A normal call could then
be derived from conference calls by limiting the number of
participants to two. The upgraded hierarchy is illustrated
in Figure 3. Obviously, the changes related to this upgrade
as well as related validation and verification effort can be
estimated to be considerable.

Simple Modification: Knocking

Example of a minor cross-cutting is knocking. If sub-
scriber a is speaking on a phone with b and she is called
by a third subscriber c then a hears a voice of knocking in
her phone and can answer that call. In this case the stable
root is the layer Legs because only the layer Processes is
changed.

Obviously, verification and validation effort implied by
this modification is also minimal.

5. Conclusions

We have presented an approach to handling a hierar-
chy of non-primitive abstractions to ease software evolu-
tion. The main contribution of the paper is in showing that
such hierarchies can be rigorous. Moreover, we have out-
lined an example of using abstraction hierarchies in a mo-
bile switch, and showed how this makes software evolution
more manageable. The example was a simplified version of
a more comprehensive case study carried out during DISCO

project.



A similar approach has already been introduced in [15],
although in an informal setting. In that context, the rela-
tion between higher-level abstractions and their implemen-
tations is handled with links of a browser tool and the un-
derlying data base. This practical example also supports
our claim that lower levels of abstraction evolve more than
higher abstractions. While the demonstration in that con-
text provides justification on industrial applicability of this
approach. The introduction of the related formalism in this
paper is an obvious improvement in the theoretical sense.
In practice, this also results in the option to use the tools
associated with the formalism [1].

In real life software engineering, the approach requires
more work in short turn. We must investigate the effect of
evolution to the specification, and reflect the changes to im-
plementation level via the abstraction hierarchy. However,
more comprehensive understanding of changes, and related
documentation in the specification, compensates this in the
long run.
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